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Research Objective – Prediction of FSW Quality 

FSW Machine FSW Tool FSW Joint 

Process Parameters Tool Temperature Welding Quality 

 Tool rotation speed 

 Feed rate 

 Downward force 

 Transient or stabilized 

temperature 

 @ Probe, shoulder 

 Tensile strength 

 Internal microstructure 

(pore size, fraction) 

Welding Condition 

– Quality Relationship 
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Approach 
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Wireless FSW Tool Temperature Measurement 

FSW Tool Holder 

Battery  

(total 6VDC) 

Thermocouple 

amplifier (3 CHs) 

Wireless communication board 

(Bluetooth low energy) 

On/Off switch 

Tool cover 

(ABS, 3D printed) 

FSW tool w 

thermocouple 

Thermocouple 

wire slot/hole 

 TC1: Shoulder, dist. 5 mm 

 TC2: Probe, dist. 2.5 mm 

 TC3: Shoulder, dist. 1 mm 

 Filled with highly thermal 

conductive adhesive 

Aluminum 

body 
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FSW Tool Temperature Measurement Setup 

Wireless tool 

temperature 

measurement (TX) 

Wireless tool 

temperature 

measurement (RX) 
AL6061 plates 

(2 mm thickness) 

 Realtime tool temperature measurement 

 Sampling rate 100 Hz/Ch, Operation time >4 hr 

 No mechanical and electrical issue @ tool rotation speed ≤2500 rpm 
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FSW Temperature-Quality Data Preparation 

* Better DoE method for ML modeling than factorial or Latin hypercube sampling (LHS) due to minimized overlapping experimental 

conditions and low correlations between each experimental variable (Das S., Tesfamariam S., arXiv.2202.06416, 2022.) 
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Design of Experiment (DoE) 

 Process parameter: Tool rotation speed [500, 2500], Feed rate [100, 1000] 

 DoE by *Hammersley Sequence Sampling (HSS), Total 100 samples 

 Two HSS domain: Main / Extended 

 Main: 90 samples / Extended: 10 samples 
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Tool Temperature Profile at Different Positions 
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Tool Temperature Profile at Different Positions 
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Transient temperature profiles at different positions in FSW tool FEM thermal analysis  

Position Meas. FEM 

Shoulder, dist. 5 mm 414.7 ℃ 414.5 ℃ 

Probe, dist. 2.5 mm 537.9 ℃ 537.6 ℃ 

Shoulder, dist. 1 mm 512.5 ℃ 512.2 ℃ 

 Small difference to radial direction (measurement & FEM) 

 Only temperature measurement at probe is sufficient 

(Probe, dist. 2,5 mm Vs. Shoulder, dist. 1 mm  Almost same depth) 
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FSW Temperature-Quality Data Preparation 

Probe temperature at 100 different condition Feature extraction (e.g., 1578 rpm, 460 mm/min) 
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 Feature extraction by geometrical feature of the temperature profiles 

 1. Temperature after stabilization 

 2. Time at 63.2% of ΔT (~ 1 𝜏; Time constant) 

 3. Time at 86.5% of ΔT (~ 2 𝜏; Time constant) 

 

 More features will be determined. 

 

ΔT 
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FSW Quality Measurement Sample Preparation 

300 100 

100 

[Unit : mm ] 

Temp. stabilization 

region 

Temp. Stabilized 

region 

Tool rotation and 

welding direction 

 Tensile sample:  

ASTM E8/E8M-13a, 3 sample/condition 

 Sample for microstructure analysis:  

5×26×2 mm, 3 sample/condition 

 All samples were from the temp stabilized region. 
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FSW Process Parameter – Feature Correlation 

 Strong correlation between 

a) Tool rotation speed – Stabilization temperature 

b) Feed rate – Time at 63.2% of ΔT 

c) Feed rate – Time at 86.5% of ΔT 
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Tool Temperature – Welding Strength ML Model 
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Input Data Conditon 

Hyperparameter Range Optimized  

# of hidden layers 1, 2, 3 3 

# of neuron per a hidden layer 8, 16, 32 16 

Learning rate 0.1, 0.01, 0.001 0.01 

Activation ReLU, gelu, elu, swish, softplus elu 

Initializer glorot_normal, glorot_uniform, he_normal, he_uniform, lecun_normal, lecun_uniform Lecun_uniform 

Optimizer Adam, Adadelta, Adamax Adamax 

* Hyperparameter optimization (HPO) by Hyperband algorithm with Tree-structured Parzen Estimator (TPE) and pruning.  

* Early stopping and restoration of the best model were applied for main training after HPO 
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Prediction Performance of ML Model 
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Measured 

Tensile Strength 

(MPa) 

Predicted 

Tensile Strength 

(MPa) 

Error 

(%) 

198 193.12 2.46 

203 207.89 2.41 

205 202.37 1.28 

209 209.05 0.02 

204 205.5 0.73 

Measured 

Tensile Strength 

(MPa) 

Predicted 

Tensile Strength 

(MPa) 

Error 

(%) 

214 213.37 0.29 

223 221.29 0.77 

218 221.42 1.57 

219 220.83 0.84 

218 221.42 1.57 

R2 =  0.878 

MAPE = 1.103% 

MAE = 2.296 [MPa] 

RMSE = 2.779 [MPa] 



14 

Research Objective – XAI Analysis 

FSW Machine FSW Tool FSW Joint 

Process Parameters Tool Temperature Welding Quality 

Black box 
(Opaque characteristics)  

XAI 

 Influential features 

(Time, temperature) 

 Specific quality-targeted  

      monitoring window,  

      ML model improvement 

 FSW process  

control strategy 
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Conclusions 
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 The developed FSW tool module was capable of measuring tool temperature to 

accurately predict the ultimate strength in FSW. 

 

 Analysis of the measured tool temperature profiles presented that rotational speed 

had a greater influence on temperature than feed rate. 

 

 The tool temperature profile features were used as input feature for the ANN to 

predict ultimate tensile strength. 

 

 Overall prediction performance of the ANN model was ≥98% accuracy (1-MAPE). 
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